分析 XPS:

以 Cls 為例,將 Cls 的數據放進 origin 程式中,做出曲線圖,並通過數據擬合與文獻參考,將 Cls 各 鍵結的 Binding energy 位置與峰值(如 C-C、C=O、C-N 鍵) Fitting 出來;並觀察 Cls 各鍵結的 Binding energy shift。亦可上網搜尋並下載 XPSpeak、CASAXPS 等專業分析軟體,進行分析。

以 CASAXPS 專業分析軟體為範例

1. 打開程式,點選 Convert,打開欲分析檔案。

2. 會顯示所有分析的元素,接著我們以 Fitting Cls 的數據為範例。

	÷	🛍 🎽 🖨 🖪 🔋
▣▣∎∎∎⊨⊨⊨+≠ <u>≁ ∢</u> ∢≯ <u>₿</u> ₿₽₽₽₽ ■⊠₽₿₿\$₽₽	Black Blac Com Info	Exp Exp ELR Y C MODE

3. 點選 Quantify(F7),接著點選 BG Type 按 Create。

AcasaXPS Licensed to:H368 SJTU Site License - [3pvk_cb_(multi)_xps(al).vms]

💹 File View Window Options Select Help

4. 自行拉取欲分析的範圍,取 Background 與 Raw data 數據最為吻合的範圍,接著按 Components。

5. 觀察數據有幾根峰值(或參考文獻),按 Create 選擇對應欲分析的 Peak,以圖為例有3根峰值,便按 Create 3 次。並調整 Peak 的位置與 Raw data 數據最為吻合。

Binding Energy (eV)

6. 調整完 Peak 的位置,接著按 Fit Components,便能有程式 Fitting 出的結果。最後按 Save TAB ASCII to Clipboard 便能將分析輸出成 txt 檔,並利用 Origin 繪製成圖。

分析 UPS:

1. 將所得之 UPS 數據, X 軸的 Binding energy 加上 5eV, 並將數據放進 origin 程式中, 做出曲線圖。

Element : R	egion 1 of 1; Depth	Cvcle 1 of	; Time Per Step 50; Swee
15	125	20	
14.975	124	19.975	
14.95	146	19.95	
14.925	120	19.925	
14.9	125	19.9	
14.875	130	19.875	
14.85	113	19.85	
14.825	121	19.825	
14.8	107	19.8	
14.775	123	19.775	
14.75	134	19.75	
14.725	136	19.725	
14.7	104	19.7	
14.675	115	19.675	
14.65	122	19.65	
14.625	123	19.625	
14.6	108	19.6	
14.575	125	19.575	
14.55	123	19.55	
14.525	129	19.525	
14.5	109	19.5	
14.475	117	19.475	
14.45	140	19.45	
14.425	132	19.425	

2. 在高 Binding energy 的地方有明顯二次電子訊號的劇烈上升,對上升的譜線作切線與強度為 0 的 直線相交可得二次電子的截止邊,以圖為例,二次電子的截止邊為 16.537 eV。將 He I 的強度 21.2 eV (He II 的強度 40.8 eV)扣上二次電子截止邊,即可得到材料的 Work Function,以圖為例,Work Function=21.2-16.537=4.663 eV。

3. 在低 Binding energy 的地方可看到二次電子訊號的下降,對下降的譜線作切線與強度為 0 的直線 相交可得低動能的截止邊,將 Work Function 加上低動能的截止邊,即可得到材料 Valence band 的 位置,以圖為例,低動能的截止邊為 1.124 eV, Valence band 的位置= 4.663+1.124 =5.787 eV。可 再藉由光譜量測得到材料的能隙大小,換算得到 Conduction band 的位置。

